Write the answers to each Group in a separate answerbook.

2023

MATHEMATICS — MDC

Paper: CC-1
Full Marks: 75

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Symbols have their usual meanings.

Group - A

[Calculus]

(Marks: 20)

1. Answer any four questions:

2×4

- (a) If $\lim_{x\to 0} \frac{\sin 2x + p \sin x}{x^3}$ be finite, find the value of p.
- (b) Evaluate $\int_{0}^{\pi/4} \tan^5 x \, dx$.
- (c) If $y = \frac{x}{x+1}$, find $y_5(0)$ where y_n is the *n*th derivative of y w.r.t. x.

(d) If
$$I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \, dx (n > 1)$$
, prove that $I_n + n(n-1)I_{n-2} = n \left(\frac{\pi}{2}\right)^{n-1}$.

- (e) If $y = x^{2n}$ (n: a positive integer), then show that $y_n = 2^n [1.3.5...(2n-1)]x^n$.
- (f) Evaluate $\lim_{x \to \infty} \left(\sqrt{x^2 + 2x} x \right)$.
- (g) Find the interval on which the function $f(x) = x^2 e^{-x}$ is monotonically decreasing.
- 2. Answer any three questions:

(a) Evaluate
$$\lim_{x\to 0} \frac{(1+x)^{1/x} - e}{x}.$$

4

Please Turn Over

(b) Obtain a reduction formula for $\int \cos^m x \sin nx \, dx$; m, n being positive integers and deduce that

$$I_{m,m} = \frac{1}{2^{m+1}} \left[2 + \frac{2^2}{2} + \frac{2^3}{3} + \dots + \frac{2^m}{m} \right] .$$
 2+2

- (c) Show that the area bounded by one arch of the cycloid $x = a(\theta \sin\theta)$, $y = a(1 \cos\theta)$ and the x-axis is $3\pi a^2$, which is equal to three times the area of the generating circle.
- (d) Find the length of the perimeter of the curve $r = 2(1 \cos\theta)$.
- (e) Find the values of a and b if $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3} = 1$.
- (f) Find the volume of the solid generated by the revolution of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ about x-axis.

Group - B

[Geometry]

(Marks: 35)

3. Answer any two questions:

 $2\frac{1}{2} \times 2$

- (a) If the radius of a right circular cylinder is 5, axis passes through the point (1, 2, 3) and is parallel to the straight line $\frac{x-4}{2} = \frac{y-3}{-1} = \frac{z-2}{2}$, then find the equation of the cylinder.
- (b) Find the radius of the circle given by $x^2 + y^2 + z^2 2y 4z 11 = 0$ and x + 2y + 2z = 15.
- (c) Find the angle through which the axes must be turned so that the equation lx + my + n = 0 ($l \ne 0$) may reduce to the form ax + b = 0.
- (d) Determine the nature and the length of the latus rectum of the conic whose polar equation is $\frac{2}{r} = 3 3\cos\theta$.
- 4. Answer any five questions:

6×5

- (a) Find the equation of the locus of the point of intersection of two tangents to the parabola $y^2 = 4ax$ such that the chord of contact subtends a right angle at the vertex.
- (b) In an ellipse the normal at an extremity of the latus rectum passes through the extremity of the minor axis. Prove that $e^4 + e^2 = 1$, where e is the eccentricity of the ellipse.
- (c) Find the equation of the cylinder whose guiding curve is the ellipse $4x^2 + y^2 = 1$, z = 0 and generators are parallel to the straight line $\frac{x}{2} = \frac{y}{-1} = \frac{z}{3}$.

- (d) Show that the equation of the tangent to the conic $\frac{l}{r} = 1 + e \cos \theta$ parallel to the tangent at $\theta = \alpha$ is given by $l(e^2 + 2e \cos \alpha + 1) = r(e^2 1)[\cos(\theta \alpha) + e \cos \theta]$.
- (e) Find the nature of the surface given by the equation $3x^2 2y^2 6x 8y 4z = 0$.
- (f) Show that the perpendiculars from the origin on the generators of the paraboloid $\frac{x^2}{a^2} \frac{y^2}{b^2} = \frac{2z}{c}$ lie on the surface $\left(\frac{x}{a} \pm \frac{y}{b}\right)(ax \pm by) + 2z^2 = 0$.
- (g) Find the equation of the sphere having the circle $x^2 + y^2 + z^2 + 10y 4z 8 = 0$, x + y + z = 3 as the great circle.
- (h) Reduce the equation $x^2 6xy + y^2 4x 4y + 12 = 0$ to its canonical form and hence determine the nature of the conic.
- (i) Find the equations to the generating lines of the paraboloid (x+y+z)(2x+y-z)=6z which passes through the point (1, 1, 1). Hence, find the angle between these generators.

Group - C

[Vector Analysis]

(Marks: 20)

5. Answer any four questions:

- 2×4
- (a) Find, by vector method, the volume of the tetrahedron ABCD with vertices A(1, 1, -1), B(3, -2, -2), C(5, 5, 3) and D(4, 3, 2).
- (b) Find the projection of the vector $\vec{a} = 7\hat{i} + \hat{j}\hat{j} 4\hat{k}$ on $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$.
- (c) A particle, acted on by constant force $4\hat{i} + 2\hat{j} + 3\hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$ is displaced from the point $\hat{i} + 2\hat{j}$ to $2\hat{i} \hat{j} + 3\hat{k}$. Find the work done by the force.
- (d) Find the value of the constant d such that the vectors $(2\hat{i} \hat{j} \hat{k})$, $(\hat{i} + 2\hat{j} 3\hat{k})$ and $(3\hat{i} + d\hat{j} + 5\hat{k})$ are coplanar.
- (e) A force $5\hat{i} + 2\hat{j} 3\hat{k}$ is applied at the point (1, -2, 2). Find the value of the moment of the force about the origin.
- (f) Show that the perpendicular distance of the point $(2\hat{i} + 3\hat{j} \hat{k})$ from the plane $\vec{r} \cdot (4\hat{i} 3\hat{j} + \hat{k}) = 18$ is $\frac{20}{\sqrt{26}}$ units.
- (g) If $\vec{u} = t^2 \hat{i} t \hat{j} + (2t+1)\hat{k}$ and $\vec{v} = (2t-3)\hat{i} + \hat{j} t\hat{k}$, then show that $\frac{d}{dt}(\vec{u}.\vec{v}) = -6$ at t = 1.

Please Turn Over

6. Answer any three questions:

- (a) By vector method, put the equation of the plane 5x 6y + 7z = 8 in normal form and then find the equation of the plane passing through (2, 3, 4) and parallel to the plane 5x 6y + 7z = 8. 2+2
- (b) Prove that a necessary and sufficient condition for the vector function $\vec{a}(t)$ to have constant magnitude is $\vec{a} \cdot \frac{d\vec{a}}{dt} = 0$.
- (c) If $\vec{r} = 5\cos t \,\hat{i} + 5\sin t \,\hat{j} + 7t \,\hat{k}$, then find the value of $\left[\frac{d\vec{r}}{dt} \frac{d^2\vec{r}}{dt^2} \frac{d^3\vec{r}}{dt^3}\right]$.
- (d) A rigid body is spinning with an angular velocity 3 radians per second about an axis parallel to $2\hat{i} \hat{j} + \hat{k}$ and passing through the point $\hat{i} + 2\hat{j} 3\hat{k}$. Find the velocity of the particle at the point $-4\hat{i} + \hat{j} + \hat{k}$.
- (e) Show that if the straight lines $\vec{r} = \vec{a} + u\vec{\alpha}$ and $\vec{r} = \vec{b} + \nu\vec{\beta}$ intersect, then $(\vec{a} \vec{b}) \cdot \vec{\alpha} \times \vec{\beta} = 0$ but $\vec{\alpha} \times \vec{\beta} \neq \vec{0}$.
- (f) Prove that for any vector \vec{a} , $\hat{i} \times (\vec{a} \times \hat{i}) + \hat{j} \times (\vec{a} \times \hat{j}) + \hat{k} \times (\vec{a} \times \hat{k}) = 2\vec{a}$.